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The approach developed in monograph [1] is used to consider the problem of control for 
a linear system with bounded phase coordinates. The properties of the solutions and of 

the boundary conditions for the corresponding associated system are discussed. Additional 
information is obtained about the Lagrange coefficients ; this information can be used to 
reduce solutions of the initial multidimensional problem to the minimization of a func- 

tion of a finite number of variables. 

1. Formulation of the problem. Let us consider the controlled motion 

described by the equation &./dt = A (t) z + B (t) n + W (t) (1.1) 

Here the vector x is n-dimensional, the control u is r-dimensional, and the matrices 

A (t), B (t) and the perturbation n-vector w (t) are continuous. 
Pro b 1 em 1.1. We are given system (1.1). boundary conditions 2 (t=) = XOL~ 

z (tb) = Q, and the restrictions 

vrai maxt IUj (t)l 1s Vj, ta < t < tB (isi> * * ‘) r, (1.2) 

on the control u E u, and 
1 irk (t) 1 < fk (t) (k= 1,. . et ‘4 (1.3) 

on the coordinates 5 (t) E X (t) . 
The functions fli (t) are absolutely continuous and positive. We are to bring system 

(1.1) from x, to ~a in the minimum time tBo - t, under restrictions (1.2). (1.3). 

2. The tolvability conditions. The maximum principle. The 
result of the present section is valid for all closed convex restrictions u E U, L+C E X 
on the instantaneous values of the controls and of the first LQ coordinates, provided that 

zero is an interior point of both U and X. 
Let us assume that ta is fixed and consider the following moment calculation problem: 

c . hj (tp, T) u(z) d-c = cja (j=I,...,n) 

s 

(2.1) 
h, (tl, IT) u (z) do + Z,(~) = Cki (k=l,. . ., m) 

for 
UE u, z(i) E 2 (ti) (2 = - X) (2.2) 

Here { ti} , the set of points (e.g. of the form ta + i (N) (la - ta) 2-N? where 
i (IV) \( 2N, N = 1, 2, 3, . . .) , is dense everywhere in the segment (*) It,, $1 ; 

*) See Note at the bottom of next page. 
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the functions hj (& ‘V) are the jth rows of an ( n X r )-matrix 

h (t, 7) = s (7, 2) B (r) 

(AS (T, t) ,’ dt = - 5 (7, t) A (T), s (t, t) = E) 
where hi (t, Z) s 0 if ‘C > t ; the numbers cki are the components of the vector 

ckP = ck &I), z(i) -L - g,z (Q 
k 

moment problem (2. l)-(2.3) is related in a certain way [l],to initial Problem 1.1. 
Specifically, the time-optimal control for Problem 1.1 is the solution of (2.1). (2.2) for 
the smallest of the ta for which the problem is solvable. 

The solvability conditions for problem (2. l), (2.2) can be obtained by the methods of 
functional analysis. In fact, let us set 

y [hl = max, hu(u E U, hEf?J (2.3) 
yl II (ti)] = max, Z (ti) 2 (2 E Z(tJ) (2.4) 

This enables us to consider problem (2. I)-(& 3) as the problem of constructing the 
linear operation (u, z) on the elements hi (la, z), hr(ti, T’) of the r-vector space L, 
and on the elements eci) = {ej(i) , i = 1, I . ., N, .__) (@j(i) =(O, , . ._ O)if i =#= i; 
ejti) = (0, e * ** E, 0, e f *, 0) if i = i)of the m-vector space 2s. By virtue of the 

closure and convexity of the set of functions u (t) f rom L, restricted by the condition 

u E U and of the vectors {z(i)) from & satisfying (2. A), restrictions (2.2) can be re- 

placed by the inequalities <1,2]- 
(2.5) 

(2.6) 
i=l 1=1 

These inequalities must be satisfied for all h from L, and all Z(i) from &. The requi- 

red operation (u, Z) is therefore majorated by the sublinear functional (p [h], p1 [I]). 
This makes it possible to use the Hahn-Banach theorem CL], which means that the neces- 
sary and sufficient condition of solvability of the problem of moments can be reduced 
by means of the familiar procedure [3] to ensuring fulfilment of the inequality 

,, 

(2.7) 

i=l QN.h. 

for all finite sets QN of the vectors Z(i) and all n-vectors { Zj) . 
The Stieltjes integral [4] and the bounded vector functions A = (A, (t)} continuous 

from the right enable us to rewrite (2.7) as the equivalent inequality 

*) The omission of integration limits here and throughout the discussion to follow means 
that the lower limit is the left-hand end ta and the upper limit the right-hand end tg 

of the segment [ta, $1 . The limits in other cases are specified. 



684 A. B. Kurzhanskii and Iu. S. Osipov 

Problem (2.1),(2.3) is solvable if and only if inequality (2.8) is valid for any vector 
I ‘and for any bounded m-vector function A (t) . Here 

over all possible finite decompositions t, = tl < . . . ( tM = te of the segment 
[&, tel. The sufficiency of condition (2.8) clearly follows from (2. 8). The necessity 
of condition (2.8) can be established indirectly with allowance for the possibility of 

approximating any bounded function h (t): by means of a suitably chosen piecewise- 
constant function. The integrals 

s ‘1’1 ldr, s ‘r,lW 
are necessarily nonnegative, since both U and X contain zero as an interior point. But 
(2.8) then implies the equivalent condition n 

+ 1 2 h,(t, z)dhk(t)]dz +Sr&iA]] = fn^fy(hA) > 1 
T k=l ,! 

(2.9) 

for 
(2.10) 

Let us note immediately that the inf in (2.10) is necessarily attained at a nonzero 

element r~ = (1”, A” (t)). In fact,let us consider the minimizing sequence ilN). ACN’(t). 
Setting c (te) # 0, we see that v is a finite quantity. Setting nCN) = (ZtN), AtN)) in the 
left side of (2.9). we obtain the numbers vN,where wN + v . This implies directly that 

the functions A&cN)‘(t) are uniformly bounded in norm : var AkCN) (t) <ha for all N > No, 

k = 1,. . ., m, by virtue of the boundedness of the quantity 

s -rl [dAcN)] 

Now let us assume that the functions hj (ta, ‘c) are linearly independent. Such an 
assumption is quite legitimate in the problem-of control over all the coordinates. It is 
equivalent to the controllability condition [l] for system (1.1). Under the above assump- 

tion 
n s D T zpjpg, 7) 

1 
c-h-9 30 

j=l 

if the Euclidean norm I] 1 ]I + Q). The convergence property vN -_, v and the bounded- 
ness of the functions AcN) now implies that the set l(N) is bounded: 11 2(N)/j < k, if 
N > No. By virtue of the compactness of a sphere in the finite-dimensional space R, 

and the weak compactness of a sphere in the space of bounded functions (see the Helly 
theorems in [4]), we can (retaining our old notation) isolate a subsequence qtN) = (LCN), 
AtN) (t)), which converges (N --* Lm) to the element TI’ = (F’,A” (t)) in such a way that 
lcN)--+ lo in norm and AtN) + Aa in the sense of weak convergence (or convergence 
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“in the large”). Condition (‘2.10) remains valid for the limiting element, i. e. 

The integrands in (2.9) indicate that Y = W (lo, A0 (t)) (our reasoning here is the same 
as that of [S]) ; specifically, we have the relation 

s 
+fl [&I(“‘] I* S rr rdA*f 

With allowance for (2.11) we infer from this that the minimizing element of (2.9) is 
a nonzero element, This property remains valid even if the functions fbi @at xf are lin- 
early dependent but the vector c fts) is such that the initial problem is solvable in the 

absence of restrictions on the coordinates (e. g, see Cl]. Sect, X5). 

Let Problem I, 1 be solvable for some tB and Y &t,] 2 t, For tft =5. to: we have 
v It,, Q] = 0, 

Since Y ft,, ta I is conr~~uous in + , there exists a smallest number ZBo such that v tb,, 
Es” J = 1. This number yields the solution of Problem 1.1 * 

We can rewrite problem (2.9).(2.10) in a different notation. Setting (see Note 2.1) 

rbs (t) = - s ft) A (I) dt + &I (t) (2.12) 

SB = s (la), Ai (t) “- const, if i > 111, s(tJ = sa 

we obtain instead of (2.9) the condition 

where the minimum is taken over all the motions of associated system (2, In) restricted 
by the equation 

S&X@ - &$, -/- 1 s ($1 eu (t) dt = 1 f2.M) 

The minimum motion so (t) which yields the exttemum of (2.13) under condition 
(3.14) is. of course, that which is determined by the vector a~(’ = I” and by the function 

A” (t) forming the extremal element (z&9),(& IO& 

Making use of (&3),(3.4), we infer directly that equality in (z.13) applies when the 

Control U” (t) satisfies the maximum principle 

5 
so (t) B ft) u” (t) c?t = max s so ft) I3 fd) n ($1 dt (a E V) (2.15) 

or 
s” (1) B (t) no (t) = max: so (t) 23 (t) U (1) (U E U) (2.16) 

and when the trajectory x0 (t) satisfies the ma~mum condition 

- 5 s (r) &Lo {t) = max, (j z ft) dA* (tf (5 (0 E z (8 (2.47) 

The following theorem summarizes the above discussion. 
The ore m ‘2,X. Problem 1.1 is solvable if and only if condition (2, X3), where vi J$ 

are defined by (2,3), f&4), is satisfied on the motions s (8) of associated system (P, i2) 
under restriction (2.14). The optimal control u0 (t) satisfies maximum principle (2.15) 
(or (2.16)) on the minimum motion of problem (2.13). (A, 14). The optimal trajectory 
satisfies maximum condition (z&l?) on the function A0 ($1 which generates the mini- 
mum motion So (t) as well as the boundary condition sa’. 

The maximum principle has meaning in this problem provided that h”=s”(t) B(t)+0 
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on [t,, tti]. This condition is discussed in Sect. 3 below. 
If the function ho (t) is absolutely continuous, then we can speak of the “regular case” 

of Problem 1.1; if not, we shall call the problem “irregular”. 

N o t e 2.1 . The expression dh” = h” (t) dt is valid in the regular case of Problem 
1.1 . Here we can speak of the “ordinary derivative” dA” / dt = h” (t) of the function 

A” (t). The quantity so (t) is continuous in this case. Relation (2.12) is the ordinary dif- 
ferential equation ds / dt = - sA (t) + k (t) f3.18) 

In the irregular case dA / dt can be interpreted only as a generalized derivative, and 

(2.18) as an equality of distributions [3, 61. i.e. as some generalized equation one of 
whose solutions may be the already discontinuous function s (t). The above remarks are 

also basic to the interpretation of Eq. (2.12). 

Note 2.2. The definition of the quantity y, (t) implies, by virtue of (2.17). that if 

A0 (t) has a discontinuity A” (t’ + 0) - A” (t’ - 0) = h. at t = t’. then the m-dimen- 

sional vector i is supporting to the convex set X (t’) at the point x0 (t’) lying on the 
boundary of the set X (t’). 

Note 2.3 . Under specific restrictions (1. A).( 1.3) we have 

T PI = i vi 1 hi 1, 71 [l ($)I = 2 fk @J 1 lk 1 
j=l k=l 

Note 2.4 . In solving problem (2.13),(2.14), we can replace unity in the right sides 
of the corresponding conditions by some constant c > 0 whose choice can be based on 

such considerations as convenience of calculation. 

Note. 2.5 . Suitably modified, the above procedure remains valid for the problem 
of bringing system (1.1) from one convex manifold to another in the minimum time in 

the case of piecewise-absolutely-continuous functions fk (t). 

3. Propcrtiec of the aolutionr. Let X’ (t) be the set of boundary points 

for X (t). 
Lemma 3.1. If 2’ (t) E X (t) - X’ (t) for t E e, then 

for t E e . 
no (t) = con.4 

Under the conditions of the lemma we have 

which together with (2.17) yields the condition A” (t) = const for t CZ e. Proceeding 
with our argument, we narrow somewhat the class of functions fi (t) defining the set 

x (t)* 
Hypothesis 3.1. The functions fi (t) are such that each of the equations 

$ Qj (tF5, &) xj (&) * T i &j (t8, E) Yj G = fi (t8) 

j=l t;j=1 

(ZZI,..., m) (3.1) 

t, < t, < ts, 5s (ty) = fs (t-i) (s = 1, . . ., m) 

can be fulfilled for each t-,, Tj (tY) only on a set of values { tfj} of zero measure. 
Roughly speaking, this means that no piece of the trajectory z (t) of system (1.1) 



On control problems with restricted coordinates 

constructed for uj = vi (or - v?), can lie entirely on X’ (t). 
Let us cite briefly certain sufficient conditions under which Hypothesis 3.1 holds. 

For example, let Hypothesis 3.1 not be fulfilled for the i’th coordinate and let the 
function fi (t) be piecewise-linear. Then it is necessarily the case that in some interval 

dx. / dt = aci)x + bci) u = a = const 1 
where lcj = Vj or Uj = - vi, and where the symbol a ci) represents the i th row of the 

matrix A. Let Qr be the matrix consisting of the i th rows of the matrices A, A”, . . . , 

. . , An. Let us assume that ati) # 0 (so that Qi # 0). Differentiating dxi / dt , we obtain 

Qix = P, QiAx = r (3.2) 

where the n-vectors p, r are given by the formulas 

p1 = a - b(iJ.l, ps 1 -.(i) As-2 bu (s = 2,. . . , n) 

rF; = _ #)Ak-‘bu (k= 1, . . . , n) 

Let the rz-vectors e(r), . . .., e(‘) (di) = qci) A , i \<n) be the basis of the subspace 

stretched over the vectors q(‘)A [7]. Hypothesis 3.1 is fulfilled if systems (3.2) do not 
have a common solution. By virtue of the properties of the matrices Qi, Q;+ , this is 
the case if in at least one case p’#d3, where pi, dj are the coefficients of the expansions 

of the vectors p, r in the basis vectors e(J). 

Let aCi) = 0. Hypothesis 3.1 is fulfilled if b(l) u #cc for Uj = vj or uj = - YI. This 
yields the following statement. 

L e m m a 3.2. Let the functions fi (t) be piecewise-linear, and let the matrices A, 

B be constant. Hypothesis 3.1 is then fulfilled for Qi $10 if at least one of the in- 
equalitiez p(j) # d c3) is fulfilled for the coefficients p(j), d(j) of the expansion of the 

vectors p, r in the basis e(j). Otherwise (if Qi = 0) the sufficient condition is 

b(i) u #a. 
We note that the condition of the first part of the lemma is especially simple if the 

matrix Qi is nonsingular. 
Lemma 3.3. If Hypothesis 3.1 is valid for the system (1.1) and if at least one of 

the ineoualities 1 zlro (2) 1 = jr (t), T 1 < t < ‘C2, is fulfilled, then the condition 

hj” 2 0 for ‘ti < t < ‘c2 is valid for at least one of the components hj of the function 

h” (t) = so (t) B . 
The statement of the lemma follows from the maximum principle (2.16) with allow- 

ance for restrictions (1.2) imposed on the control. 

From now on we assume that system (1.1) is completely controllable in the reinforced 
sense [l]. This means that for every fixed i the system {hiI (tp, ‘6)) of the i th com- 
ponents of the functions hj (ts, T) j = 1, . . .* ra , is linearly independent ; each 
combination 

i l,hri rp, Z) 
i=l 

( 5 li2 # 0) 
1=1 

can equal zero only on a set of zero measure. In the stationary case this condition is 
equivalent to the linear independence of the system of vectors { bci), . . ., kin-1b(i)} 
for every i = 1, . . ., r. 

Lemma 3.4. If A, B are constant, if system (1.1) is completely controllable in 
the reinforced sense, and if at least one of the functions hi” (t) vanishes identically in 

the interval T1 .< t< 4, then at least one of the conditions /xi0 (t) 1 = fi (t) is 
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fulfilled in this interval. 
First let us show that sBo # 0. Setting zoL = O(so that za # 0), we find from (2.14) 

that sao # 0 . Let X~ + 0 but sso = 0. Writing out conditions (2.13),(2.14), we find 
that ‘a” ‘a” 

0 

min 
rs 

+r [@ (rl t,J + S da(f) S(h C;)Bl+ !i I rl[dAl > 1 (5 (0, (3.3) 
; 

for ta ta t 0 tcr 
B 

sB “B - acLza + 
s 

s (t) w(t) dt = 1 

t, 

If the trajectory x0 (t) does not emerge onto the restriction, then A E const and 
sg=a,S(tgJ,) # 0. Let t’ < tg be the instant of the first emergence onto the restriction 
in motion from t, to t, . ThenA’(t)#constwhen t’-a<t<t’+aforanye>O, 
and instead of (3.3) we have tS t’ , 

min 
IS 

r [s (4 4 dt + 

t, 
s I ~1 IdAl >, 1 WI (3.4) 

for ‘a 
la 

S s (t) w(t) dt - saza = 1 

tct 

We can interpret relation (3.4) as the condition of solvability of the problem of bring- 

ing system (1.1) from xe to the origin in the time t’ - tr . The extremal element of 
problem (3.4) for which equality applies in (3.4) is the solution s’(t) of problem (3.3). 
The time t’ - tr in this problem is the optimal time. However, this contradicts the 

condition A” (t) E/Z const, t’ - e 6 t < t’ + E. Hence, sBo # U. Similarly, it turns out 
that sav # 0. Let us prove the lemma directly. Let hro(t) E 0 in the interval ‘cl Q t < rzl 
but let x0 E X (t) - X’ (t) for ~i \< 7’ < t < Z’ < z,. Then A” z const for r’ < t < 
< T’. Let us suppose first that A" (t) 3 const for r”< t < tBo. Then 

hi0 (t) = sg”S (t, t,) b(3) E 0, T’ < t < tg 

which contradicts the condition ~~0 # 0 and the property of reinforced controllability. 
Setting A0 (t) E const for t, < t < T”, we obtain 

5” (t) = SE0 s (t, t&j) G 0, t, < -cl < t < z” 

which contradicts the controllability conditions and the property s,“# 0. 
Finally, let A0 (t) E const for T’ < t < z” and A (t) E$ const for t < z’, > z”. This 

means that 
dkh.” (t)= / dt” = ys (t, 0) /IQ(j) z 0 1 

(k = I,..., n-i) 

Here t 0 P 
-y = SBO I.7 (0, tao)+ 

s 
a” (El S (0, El de 

5” 

where 0 # 0. In fact, setting y = 0, we obtain instead of (3.3) the problem 

@, (A’a) + ‘=‘B (aa’, APO) = min [@‘, (A,) + DDg (sa, Aa)] = 1, Ga, A,, $1 

(the minimum is taken over all the variables appearing in braces) for 

‘P, (A,) + ‘Pi (“a, Aa) = 1 
Here 
Aa (5) = cons& if E > tl 

4 (El E const, if 5 < 12 

(3.6) 

(3.7) 
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AB (&) f con&, if t, < j < t, + e for e > 0 

~‘,(A,) = iT[i 
‘a 1 

WI (4) s v, 511 at + ,5 71 Ma] 
ci 

to B s3 t 0 

‘Dg (“p “a) = 
5 [ 

T QS(t, $1 + 
tr 

5 

B 
d$ W S (t. 4) 1 s dt + ~-1 We] 

t 1, 
tl, t, (tl < T’, t, > t”) are the first instants of emergence of 5” (t) onto the restrictions 

with motion to the left from t’ or to the right from r”, 

‘P, (A,) = ,5 dA, (4) w W - ,5 d$ (El 8 (t,) E) ~a 
cl a 

t 0 

Q(Q, +J = sB xB + “s d$j (4) UJ (5) 

Problem (3.6). (3.7) is equivalent to the two problems 

min @‘a (A,) = 1 for ‘Pi (A,) = i, {A,) (3.8) 

min @a (ss, .A) = 1 for ‘Pa (ss. Aa) = i, (a@, At,) (3.9) 
where 

A ’ = krh a a OL ’ sBo = kzsBo, &” = kzABa, kr>‘.X kz>O 

We note that (3.9)yields the solvability condition for the problem of transfer from 
zero to 2s in the time t 0 - t, . The time ta” - t, is optimal for a given problem. 
This contradicts the pro;erties of the function Aa0 (E). Thus, y # 0 , which means that 
condition (3.5) cannot be fulfilled. The latter contradicts out initial assumption that 

kj” (t) E 0 for rl 4 t < Q. The lemma has been proved. 

C or o 11 a r y 3.1 . If system (1.1) is completely controllable in the reinforced sense 
and if at least one of the points xa, xs does not lie on the boundary X’ of the set X, then 
each of the functions hi” (t) differs from identical zero in the interval t, < t .< ts”. 

N o t e 3.1 . The lemma is valid for all restrictions z (t) e X (t) on the coordinate 

convex in 5. 
Note 3.2 . In the nonstationary variant of the lemma we must also require that the 

property of reinforced controllability be uniform in t. 

N o t e 3.3 . The condition ho (t) q? 0, t, < t < tg is essential for justifying the con- 
vergence of the discretized variant of Problem 1.1 to the continuous variant [S]. The 
justification of the property adduced for regular problems in [S] is also valid in the 
general case. 

Let us discuss a certain property of the functions h”(t). Let us assume that for some 
i = 1, . . .) s we have hj (t) z 0 for pi f 1 < r2. 

In other words, let 
so (t) IA’) EE 0, Tl < t< ‘cz 

where so (t) is the solution of the equation 

$= -_sA fh’ (3.11) 

In accordance with [S] and with Note 2.1 we interpret this equation as the equality of 
the distributions generated by the generalized derivatives s*, h’ of the functions S, A 

restricted by Eq. (2.12). Property (3.10) can then be understood as the equality to zero 



690 A. 3. Kurzhanskii and Iu. S. Osipov 

of the linear bounded operation generated by the distribution Sob(j) when this operation 

is performed on infinitely differentiable functions cp which vanish outside (zl, zs); 
(Sob@), q) = 0. This enables us to differentiate Eq. (3.10) (in the generalized sense). 
We obtain 

L!$(q*(J)) = s”(f) &‘J’(_ l)i +hi c&p”6’j’(- qh’ IO (3.12) 
dt’ 

Let n-1 
- A IL+P--x b(J) = 2 aj,(“)AQ(f) (_p =zz 1, . . . , m) (3.13) 

With allowance for (3. I-L) (i = 1, . . . , n + m - 1) , we can reduce system (3.12) 
to equations in the m-vector distribution & , 

which yield the necessary and sufficient condition for the fulfilment of (3. lo), (3.11). 
By setting h = Pjg with a nonsingular matrix Pj we can reduce system (3.14) to 

(3.15) 

Here D(j) (g) is a stationary linear differential operator of order II. + p - 3. 
We know, however [6], that the set of solutions of (3.15) in the class of distributions 

coincides with the class of solutions of (3.15) in the class of ordinary functions. This 
means that the quantities h”(t) satisfy (3. lo), (3.11) if and only if they are ordinary 

functions which constitute the solution of system of ordinary differential equations (3.14). 
If hj” (t) s 0 for several values of j, then (3.14) must be written out for each such 

value of j. 
We have written out system (3.14), (3.15) in general form, which means that some of 

the equations may be dependent. This allows us to simplify Eqs. (3.15) (e. g. in the case 

where not all of the xi0 (t), i = 1,. . ., m reach the restrictions or when every set of 

n-.vectors of the form AibcJ), i = 1, . . . . n; j = 1, . . . . s is linearly independent). Reduc- 

tion of system (3.15) to notationally simpler form for each of the possible combinations 
of m and r is beyond the scope of the present paper. 

The simplest form of the differential equation for h” results when h," (t) s 0 for a 
single j (let us say j = 1) and when only one of the coordinates (let us say Z~ = fi) 
emerges onto the restriction. Then instead of (3.14) we have 

i dk-‘_k An-h’ ($1) 
n-1 

h_; dt”l 
(- Qk + 2 a, jl 2 A”_” b”‘( - l)k E 0 (3.16) 

q=,1 

_ A” b(l) = 2 g,Aq a$‘) 

Equation (3.16) is of order n - 1 if b,(l) # 0. Otherwise, the order of the equa- 

tion is lower than n - 1. Summarizing the above statements, we arrive at the following 

statement for systems controllable in the reinforced sense. 
Le mm,a 3.5 , If at least one of the functions hj” (t) vanishes identically in the 

interval Z, < t ( ‘cs and if system (1.1) satisfies Hypothesis 3.1, then the functions 
A” (t) are differentiable in this interval and the vector function h” (t) = dA" / dt 
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satisfies differential equation (3.14). 
Corollary 3.2. If the trajectory 5’ (t) in Hypothesis 3.1 emerges onto the restric- 

tion (x0 E X) in a finite number of intervals el (t = 1, . . ., IV), then A” (t) = 

= A,O (t) $- A,“, where hd* (1) is piecewise-constant. The only points at which the 
latter can possibly experience jumps are tl, ‘t~+~ (the points of emergence onto and 
departure from the restrictions and the end points of the segments er) . The function 

&(t) is differentiable almost everywhere on [t,, .&“I . 

Note 3.4 . Since the functions A” (t), so (t) are continuous from the right, we can 
write out expressions which (by virtue of Eqs. (2.19). (3.14)) relate the initial values 
for the Zth equation of (3.14) to the initial values for pth equations of (3.14) (p > 2) 

and to the quantity saO, 
(3.17) 

k, = 1, . . .) np, 1 = 1, . . .$ N 

Here np + 1 is the order of the j th equation of (3.14). Equations (3. X7) are linear in 

sBO, n’sbp(ap) / dtkP. If system (3.17) is nondegenerate, then the boundary conditions for 
each of the N equations (3.14) can be expressed in terms of sP”, and problem (2.13). 
(2.14) reduced to the minimization of a function of n variables. Otherwise problem 

(z&13), (2.14) contains not only the unknown vector ss , but also an additional finite 
number of unknown free parameters over which minimization must be carried out. Nu- 

merical realization of the above procedure for solving (2.13),(2.14) is facilitated by an 
upper estimate of the number N. 

Note 3.5. The derivation of Corollary 3.2 remains valid if so (t) emerges onto the 
restriction in a countable number of segments el provided that the set of limit points of 
the ends 71, ~r+~ of the segments er is of zero measure. 

Let us formulate the necessary condition for a jump in the function h” (9. 
L e m ma 3.6 . If the function A” (t) has a jump h” (tl + 0) - h" (tI - 0) = h(l) 

at t = t1 , then 
W)B (U” (tt + 0) - UC) (t, - 0)) > 0 (3.18) 

In fact,@. 12) implies that 

so (tt + 0) - so (tr - 0) = hf’) (3.19) 

On the other hand, maximum principle (2.16) implies that 

so (tt + 0) Bu (t + 0) > so (tt + 0) Bu (t - 0) (3.20) 

so (4 - 0)Bu (t + 0) f so (tI - 0)Bu (t - 0) (3.21) 

Subtracting (3.21) from (3.20) and recalling (3.19). we obtain condition (3.18). 
If the functions fi (t) are differentiable, then 

W) B (u" (tl + 0) - u" (tl - 0)) & 0 

and (3.18) can hold only if [B, 91 XQ (t, + 0) = 5' (t,--0) ; this is the condition of 
contact of the trajectory X0 (t) and the manifold ~i = fi (t) at the point tr. In the 
general case the left side of inequality (3.18) can also be strictly positive (see Example 
4.4 below). Condition (3.18) is expressed geometrically by the inequality 

W(z”‘(t + 0) - x0’ (t - 0)) > 0 (3.22) 

with allowance for the fact that the vector h(s) is supporting to X (tt) (see Note 2.2). 
If the sets X and U are known, then condition (3.22) allows us to isolate points capable 
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of being associated with jumps in no (t). In particular, not all the points zr, zl+i in the 
conditions of Corollary 3.2 can satisfy (3.22). 

The following statement summarizes the present section. 
T he ore m 3.1 . Let system (1.1) be completely controllable in the reinforced sense 

and let Hypothesis 3.1 be fulfilled. Then at least one of the functions h,” (t) z 0 in 
the interval ‘c’ f t < Z” if and only if at least one of the identities ) xi 1 T fi (t), 
T’ f t < T” is fulfilled. If z” (t) emerges onto the restriction on a finite set of seg- 

ments er: zr ,< t Y< 71+1, 1 = 1, . . ., N only. then associated system (2.12) is of the 
form N 

S’ (t) = - SA + h”(t) + 2 (h”‘6 (t - tl) + A”+“6 (t - tr+l)) (3.23) 
j=l 

The function h” (t) satisfies differential (3.14) in each interval 71 < t < zl+i ; 
the vectors h(r), h(‘+rJ satisfy condition (3.18) in the same intervals. The solution of 

problem (2.13),(2.14), which reduces here to the minimization of a function of a finite 

number of variables, yields the boundary conditions SB’ for system (3.23). the quantities 

h” (t), Iv(‘), A( l+l), and the instants ‘61, zr+i of emergence onto and departure from the 
restriction. 

In the intervals where 5” (t) E 0 the optimal controls can be obtained from (2.16). 

Uj’ (t) = Yj sign So (t) b(j) 

The form of h” (t) (see [lo]) enables us to conclude that under the conditions of 
Hypothesis 3.1 each of the “relay” functions Uj” (t) can experience not more than n- 1 
switchings in each open interval (ti, s t ) where h” (t) E/S 0 (and, consequently, where 
LI: does not lie on X’I . But if h,” (t) E 0, then (2.16) no longer provides information 
for determining no (t). Additional considerations must be applied. Specifically, having 

solved (2.13), (2.14) and determined rl, ‘rl+i, we can set zi = fi (t) (alternatively, 
if the fi (t) are differentiable a sufficient number of times, we can make use of the con- 
ditions &xi / dtk = fjck) (t) ) either to find U’ (t) directly or to reduce Problem 1.1 
to much simpler form. We can also determine u” (t) by means of the device described 

in [S]. 
In conclusion we note that the above approach is also valid under nonconvex restric- 

tions on u (t). This entails the possibility of a slipping state 111, 123. and the analysis 
must be complemented by an appropriate interpretation of the slipping state as, for 

example, in [ll, 133. 

4. Example 4.1. Let us consider the controlled straight-line motion with friction 
described by the equations 

zr’= 52, .+, =- 5.2 + u, t, = 0 (4.1) 
lx*] < 1, I ZJ I < 2, xLy = CJ, 0) zB = (2 In V3 + V2, 0) 

The quantity Ia ’ is unknown. For ]~a/< 2 the system does not have points at which 
A” (t) might experience jumps. This enables us to construct immediately problem(2.13), 

(2.14) 2. “a 
(4.2) 1 

min 2 
( \I ss,A t 

“ai (1 - ,Q+)) + spa ,(tB-8) +f~~(~)~-~~-~‘ni~a~+fj,ildl;=l 
t a a tx 

for, sB1 23, = c (for convenience we set c z x3,). Recalling the fact that Eq. (3.16) is 
here of the form h’ = U, li. = const and constructing the equation of the type (3.17) 
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:’ 
sB1 (1 - e -(+q + SB. ,(‘a-) + h \ ,--_(b--w q = * 

(4.3) 
Tt 

expressing h in terms of sB1, sB2 , we obtain the solution of problem (4. ;2) and then 

z1 = In 2, 7% = i + In 2, tBo = i + In 3, .sbO = (2, - i) 

h” (t) = -2, r1\<t<r2, X”SO, t\(zr, t>ra 

The optimal equation satisfying the maximum principle is in this case 

u” (t) = 2, oQt<rl, u” (t) = zao (t) = 1, 71 < t < "a 

u" (t) = - 2, 7% < t < $0 

E x a m p 1 e 4. i? . Let us consider the oscillatory motion with a resistance force 

described by the equations $r* = 22, za* = _ 5$. _ 2x, + 2u, t, = 6 (4.4) 

I$1 < 1, I r.4 I d 5, s= = (6, 01, 58 = 0.2; 6) 

Here jumps in A0 (t) can occur at the points (rf: 1.6; &- I), (& 2.4; F i). Under the 
above boundary conditions we can look for the quantity ho in the class of piecewise- 

absolutely-continuous functions. We have the problem 

fBO 
min 5 i Sl 

e-(tg”-e) SBr. . 
t 
2 s1n 2 (ta” - 6) + Sas @OS 2 ($0 - a) - 

t, 
t 0 

(4.5) 

gquation (3.16) is of the form i = 4h, which means that 

h” Q) = pe4PQ for q < t < T,, 2.” ftf s 0 for t<rj, tZ3rTa 

Constructing the equation analogous to (4.3) and solving (4.5). we obtain 

sBIo = 1, sBIlo = sin 2 (tea - z.J / 5 sin [2 (ta” - 7.J ---cc] 

eos CL = 1/5, sin & = a/5r k” = a,f,~-cf@“-Tx) csc (2ta0 - 2~ - a), 

a1 = 0.113, rs = 1.163, ts” = 1.222, u” (t) = 5, oQt<rl 

u” 0) = 2.5~~’ + xzo, Tl Q t< 72, 24" (t) = - 5, T2 < t d tgo 

We can see that problems 4.1 and 4.2 are regular. Let us consider some sample irre- 
gular problems. 

E x a m ple 4.3 . We have the equations 
II* = x2, X2 *= u (4.6) 

IUl<i, 1 5.2 1 < 1 + ‘1% (4.5 - v = f (t)* x0 = (0, Oh X@ = P.f24, 0) 

Verifying the possibility of fulfilment of condition (3.18) at some point, we see that 
tl = 3.5, t, = 5.5 are such points. This means that if tl, t, are points of emergence 
onto or departure from the restriction, then we can expect jumps in A0 (t) at these points. 
We therefore attempt immediately to find b” (t) in the form 

1’ (t) = hf1’6 (t - tl) + A@)6 (t - tz) + h, ‘tl < t < T2 (h = con&) 
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since (3.16) is of the form h’ (t) = 0 

min ~151,10+sil+f~Q~~~~~~~~~+f~:o!ill)~d~}ili.~, hi (4.7) 

0 a 0 

for sBIZPI = ~@r. Solving the above problem, we obtain 

‘tl = 3.5, -r2 = 4.5, $0 = 5.5, h(‘f = - 1, a(2) = 0, h = - “fil”, $0 = (1, -1) 

The function ho (6) = so (6) b is therefore discontinuous, 

h”= 2.5-e (0<6<3.5), h’s0 (3.5<6<4.5) 

ho (S) = 4.5 - 6 (4.5 < 6 < $0 = 5.5) 

The control EL’ (t) is of the form 

zP(IY)= 1 (0<6<2.5), u”= -1 (2.5<@<3.5), zP=O (3.5<5<44.5) 

u* = - 1 (4.5, 5.51 

We note that by virtue of the smoothness of f (t) the optimal trajectory 5“ (t) comes 
in contact with the restriction X at t = 3.5. 

E xa mple 4.4 . Let us suppose that the continuous restriction in Example 4.3 is not 

smooth:12,1<at+b, where a=O,b=l aslongas O,(t<Z ,and,further,n>l, 
b = I--2n if t > 2. Jo = (0,O) zB = (5,0), 1 u 1 < 1. The only point where A0 (t) can 
experience a jump is tl = 2. Solving problem(4. ‘7) for f (t) =- nt + L, we obtain A* = 

= h(‘)6 (t - t&t 3L (h = con&), 7, < t < r,. As a result we obtain -se0 = (1, -2), 
J_‘l’Z__1 . h=_-- 0 B ,tl=Ira,=2=f.?and, moreover,t”=j, B 

so (t) b = 1 - t, ZP (t) = 1 (0 < t < 1) 
so (t) b = 0, u” (t) = 0 (1 q t < 2) 
so (t) b = 3--t, u0 (t) = sign sc (t) b (2 < t < 5) 

i.e. 
ua = 1 (2 d t < 31, u” = - 1 (3 < t < 5) 

In this case x0 (t) does not come in contact with the restriction X at t, = ‘t*. Like 
f (t), the trajectory x0 (t) is not differentiable for t = 2. 

E xa m ple 4.5 . Now let us suppose that Hypothesis 3.1 is not fulfilled ; for the sys- 
tem CQ’ = x2, Q’ = U, I u\ < 1 we are given the condition Ix2 1 < f (t), where f (t) - 
=5 - t for 0 < t < 3 and f (t) = 2 -I- t for t > 3, I~ = (0, O),zg = (7,O). This prob- 
lem is similar to (4.7). However, we cannot make use of Eq. (3.16) in this case, since 

we do not necessarily have h” (t) z 0 at the restriction. The quantity (generalized 

function) X0 (t) can be obtained directly,by minimizing the expression of the form(4.7). 
This yields 0 = (1, -_a), 

ho (t) = ?- t 
h” (t) = - 28 (t - 3), tgo = 6 

(0 < t < 31, h” (t) = 4 - t (3 \< t < 6) 
UC (t) = 1, (Oqt<2,3<t<4) 

U0 (t) = - 1, (2dt<3, 4<t<6) 

E x a m p le 4.6 , Let us again consider Eqs. (4.6). but under the conditions 1 u l < 1, 
1 x2 I Q f (t), where the function f (t) is defined as follows, We are given the function 

3- t--pn, (1 - 21-n q t < 1 - 2-n - p-1) 

cp (Q = t - 2 + 21-n ( (1 - 21-n - 2-n-1 6 t < i - 3-n) 

1, fl<t<I;, 2<t<3 
(n=1, . . . . N. . ..) 
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Moreover, the function f (t) is defined in such a way that f (t) > ‘p (t) for 1--21-n-- 
- 2-n-2 < t < 1__21-n + P+2 and f (t) = ‘p (t) at the remaining points. The boundary 
conditions are as follows: I~ = (O,O), zB = (0, 33/r2). Again minimizing an expression 

of the form (4.7) under the condition sB, = 1, we obtain co 

$0 = 3, SB10 = 1, p62 “z-i , h”(t)=x Odi6(t_tti) 

ai _ 2-i, ti = 1-2-i __2+-1 
i=l 

Computing the quantity ho (t) (which differs from identical zero everywhere in this 

case), we obtain Q (t) = i, (0 Q t < 1) l-2-(“-‘) -2-@+‘) < t < 1 -2-n) 

u”(t) = - 1, (2 < t < 3, l-2-(“-‘) < t < 1-2-n -2-@-l)) 

In this example the motion I’ (t) emerges onto the restriction an infinite number of 
times and the function A” (t) has a countable number of jumps. The optimal control can 

be determined everywhere on the basis of the maximum principle. One of the reasons 
for this is the fact that Hypothesis 3.1 is not fulfilled. 

In conclusion we note that the solution of problems with an infinite number of emer- 

gences onto the restriction is not usually reducible to the minimization of functions of 
a finite number of variables , although the procedure described in Sect. 2 remains valid 
for such problems. The chief difficulty in this case lies in the determination of the mini- 

mizing element from (2.13). (2.14). 
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